
IINSPIRE STEM Survey
Visualization Tool

DESIGN DOCUMENT TEAM 24

Client
Dr. Diane Rover/University of Iowa

Advisors​

Dr. Diane Rover

Team Members & Roles
Alex Moeller - Project Manager/Frontend

Nick Pinnello - Backend
Charlie Moreland - Backend

Max Strater - Frontend
Isabelle Raghavan - Frontend

Matthew Bennett - Cloud
Landon Gulotta - Cloud/Security

Team Email: sdmay25-24@iastate.edu

Team Website: https://sdmay25-24.sd.ece.iastate.edu/#

mailto:sdmay25-24@iastate.edu
https://sdmay25-24.sd.ece.iastate.edu/#

Executive Summary

The MySTEMGrowth Survey Visualization Tool is a web-based application designed to
improve user engagement and enhance access to survey data. The platform allows
student participants to complete surveys and visualize their individual results, while
program coordinators can manage programs, invite students, and customize program
resources. Administrative users have access to comprehensive data analysis and can
extract statistical insights for research purposes. This project builds upon the work done
by a prior Senior Design team, with this year’s efforts focused on modernizing the user
interface (UI), improving the user experience (UX), and enhancing overall functionality to
support scalability and long-term sustainability.

Problem Statement and Importance​
While tools like Qualtrics are primarily designed for collecting and aggregating survey
responses, the MySTEMGrowth Survey Visualization Tool goes beyond simple data
collection by delivering a user-centered experience that drives personal development
and program improvement. Unlike standard survey platforms, MySTEMGrowth
empowers students to visualize their own STEM capabilities, track their progress over
time, and set personalized goals for growth.

For program coordinators, the platform serves as a comprehensive hub to manage all
aspects of the program, including inviting students, assigning and managing surveys,
and customizing program resources. Administrative users gain advanced capabilities to
download, analyze, and interpret aggregated survey data for research and statistical
analysis. Additionally, the tool supports user role management, enabling admins to
promote users into higher-level roles such as program coordinators or fellow admins.

Key Design Requirements​
Our project prioritizes usability, scalability, and maintainability. Our application should
provide valuable survey experiences for students and dashboards/overviews for admin
users. Additionally, the architecture should support future changes with minimal effort.​
​
The existing MySTEMGrowth Survey Tool lacked a modern UI/UX, limiting its usability
and appeal to target audiences. Additionally, its non-cohesive architecture posed
challenges to maintainability and scalability, limiting its usefulness for future Senior
Design groups. Addressing these issues is critical to enhancing user satisfaction and
maintaining the program’s value as a research and engagement tool.

Design Summary​
We have adopted a modern technology stack to meet these goals:

●​ Frontend: React with the Chakra UI component library, TypeScript, Next JS
●​ Backend: MySQL
●​ Cloud Infrastructure: AWS ECS, Secrets Manager, and Amazon RDS

Our design strategy emphasizes modularity and reusability, ensuring ease-of-use for
both current and future developers.

Learning Summary

Development Standards & Practices Used
IEEE Standards
● IEEE 26515-2018 - Agile Development Cycle

○ We plan to use this style of development for our project to ensure
efficient development that allows for continual communication between the team and
client in regards to the deliverables.
● IEEE 829 - Software Test Documentation

○ Following this standard for test documentation allows our team to easily
document our tests to show what each test does and its expected results.
● IEEE Computer Society Code of Ethics:

○ We work professionally and ethically to further the advancement of software
engineering.

Summary of Requirements
- A web-based tool that client users can access
- Create charts based on survey data
- Generate explanations for the created charts
- Provide the user with options to save or print the created charts
- Store statistical survey results in a database to be accessed by the web tool
- A web-based tool that client users can access

Applicable Courses from Iowa State University Curriculum
COM S 309, COM S 319, COM S 327, COM S 363, COM S 409, SE 317, SE 329, SE
339, SE 417, SE 421

New Skills/Knowledge acquired that was not taught in courses
● TypeScript programming language
● Front-End Framework such as React
● Data Visualization Library (AnyChart)
● Data Processing and Analysis tools
● Data Security
● UX design practices
● Amazon Web Services: ECS and RDS
● CI/CD Testing
● Infrastructure as Code (IAC)
● 3rd party Authentication

Table of Contents
Table of Contents​ 5
1. Introduction​ 8

1.1. Problem Statement​ 8
1.2. INTENDED USERS​ 9

2. Requirements, Constraints, And Standards​ 12
2.1 REQUIREMENTS, CONSTRAINTS, AND STANDARDS​ 12
2.2 ENGINEERING STANDARDS​ 14

IEEE 26515-2018 – Agile Development Cycle​ 14
IEEE 1448a-1996 – Standard for Software Life Cycle Processes​ 15
IEEE 1621-2006 – Standard for User Interface Design and Management​ 15

3 Project Plan​ 16
3.1 Project Management/Tracking Procedures​ 16
3.2 Task Decomposition​ 18

Cloud​ 18
Frontend​ 19
Backend​ 19

3.4 Project Timeline/Schedule​ 20
Task Breakdown​ 21

3.5 Risks and Risk Management/Mitigation​ 22
3.6 Personel Effort Requirements​ 23
3.7 Other Resource Requirements​ 24

4 Design​ 25
4.1 Design Context​ 25
4.1.1 Broader Context​ 25

4.1.2 Prior Work/Solutions​ 26
4.1.3 Technical Complexity​ 27

4.2 Design Exploration​ 32
4.2.1 Design Decisions​ 32

Backend Role Management Design​ 32
Separation of Frontend and Backend Services​ 32
Dashboard Design​ 33

4.2.2 Ideation​ 34
4.2.3 Decision-Making and Trade-Off​ 35

4.3 Final Design​ 36
4.3.1 Overview​ 36

Backend Overview​ 36
Frontend Overview​ 36
Cloud Overview​ 37

4.3.2 Detailed Design and Visual(s)​ 38
4.3.3 Functionality​ 40

4.3.4 Areas of Challenge​ 41
4.4 Technology Considerations​ 42

5 Testing​ 44
5.1 Unit Testing​ 44
5.2 Interface Testing​ 44
5.3 Integration Testing​ 44
5.4 System Testing​ 44
5.5 Regression Testing​ 45
5.6 Acceptance Testing​ 46
5.7 User Testing​ 46
5.9 Results​ 47

6 Implementation​ 48
6.1 Design Analysis​ 48

7 Ethics and Professional Responsibility​ 49
7.1 Areas of Professional Responsibility/Codes of Ethics​ 50
7.2 Four Principles​ 51
7.3 Virtue​ 52

8 Conclusions​ 56
8.1 Summary of Progress​ 56
8.2 Value Provided​ 57
8.3 Next Steps​ 58

9 References​ 59
10 Appendices​ 60

Appendix 1 – Operation Manual​ 60
Cloud​ 60

Networking Setup (VPC, Subnets, Security Groups)​ 60
Database Setup (Amazon RDS – Aurora MySQL)​ 61
Elastic Container Registry (ECR)​ 61
Application Load Balancer (ALB)​ 61
Elastic Container Service (ECS)​ 61
CI/CD Pipeline (GitLab + AWS)​ 62

Frontend​ 62
Backend​ 63

Appendix 2 – alternative/initial version of design​ 64
Appendix 4 – Code​ 65
Appendix 5 – Team Contract​ 65

Team Members​ 65
Team Contract​ 65
Team Procedures​ 66
Participation Expectations​ 66
Collaboration and Inclusion​ 67
Goal-Setting, Planning, and Execution​ 68

Consequences for Not Adhering to Team Contract​ 69

1.​Introduction
1.1.​ PROBLEM STATEMENT

The MySTEMGrowth program supports underrepresented minority students by
encouraging their engagement in STEM fields. To better understand and improve the
program's effectiveness, researchers need a modern tool to administer surveys and
efficiently visualize the results. The current survey platform is outdated in both design
and functionality, making it difficult to use and time-consuming to manage.

Our project addresses this problem by redesigning the frontend and upgrading the
backend infrastructure to improve performance, usability, and responsiveness.
Additionally, the restructuring of Cloud resources through AWS will provide a seamless
transition for future project changes. This will streamline the survey-taking experience for
students and simplify survey creation and management for researchers/developers.
Ongoing user feedback will guide development and the addition of new features.

MySTEMGrowth participants can now take surveys, view results, and even download
their data on a much more responsive web tool. By making data collection and
interpretation more efficient, the tool will help demonstrate the program’s positive impact,
such as increased student confidence in STEM subjects.

1.2.​ INTENDED USERS
​
Admin:
Global Administrators manage the system and need access to high-level system
functions.

MVP Capabilities

-​ Generate join codes for new Admins or Program Coordinators (PCs)
-​ View current Admins/Program Coordinators
-​ View all programs and download specific program data (.csv file)
-​ Delete programs

​
Administrators must access all participant responses, as this data is essential for their
evaluations and research. Their interface should allow for easy, simple access to all
needed data and functions, allowing them to manage users, surveys, and the system
without unnecessary complexity.

Program Coordinator (PC):
Program Coordinators serve in the middle-privilege role. They act as the leader of a
particular program instance (ex. Iowa State). They are in charge of all activities related to
any program instances they may have created, but cannot view information about other
program instances outside of their creation.​
This role is likely the most time-intensive and has the most daily responsibility.​
​
MVP Capabilities

-​ Create an account with the PC role
-​ Create a new Program Instance

-​ Creates a unique join code for inviting Students
-​ Select a certain Program Instance to view

-​ View information of a particular Program Instance via a drop-down menu
-​ View the number of students attached to the selected Program Instance

-​ View a table of students (name, email, join date) attached to the selected

Program Instance
-​ View, add, and delete program resources

Participants (Students):
Participants are students, often from underrepresented backgrounds in STEM, who
provide key feedback through surveys. ​
​
They will be the primary survey-taking and result-viewing user.​
​
Their interactions with the system include:

-​ Create an account
-​ Sign in/out of the account
-​ Take survey
-​ View personal survey results
-​ Download survey results to PDF
-​ Compare survey results
-​ View program-specific resources (assigned by their PC)

Students need an intuitive, easily accessible web app to access complete surveys from
any device. The system should be accessible and allow for surveys to be easy and quick
to take. They must be able to view assigned surveys, track progress, and review
personal results.

NTH (Future) Items:

-​ Change/edit the join code for a Program Instance
-​ Allow multiple PC’s for a single Program Instance
-​ View an average results graph for all students in the selected program
-​ Close a survey and set a new survey to be the default survey shown to students
-​ ⭐Allow a PC to move/transfer students from Program Instance to a new

Program Instance without requiring a new account. This will allow for surveys
taken under a different Program Instance to be viewed by the Student regardless
of what Program Instance they are currently a part of.

Researcher:​
Researchers will use this data to assess the impact of the STEM program on
participants, identifying areas of improvement to adapt the program for future students.
They will rely on the survey data to shape the program and provide insights into its
effectiveness.​
​
NOTE: THIS ROLE IS OUT OF SCOPE FOR 2024 - 2025.

Future Team MVP Ideas

-​ Create an account
-​ Store/View survey results
-​ Share/Download Data
-​ Methods to visualize survey results

Like admins, Researchers use the survey data to evaluate the program’s performance
and create different surveys to give to STEM students. Their role focuses more on
operational tasks, such as creating and maintaining surveys and organizing results. The
App should make it easy to manage and share the data, allowing for easy collaboration
with researchers.

2. Requirements, Constraints, And Standards
2.1 REQUIREMENTS, CONSTRAINTS, AND STANDARDS

Functional Requirements

●​ Survey Participants must be able to:
○​ View their results immediately after completing a survey.
○​ Access and compare results from previous surveys.​

●​ All users (Participants, Program Coordinators, Admins) must be able to:

○​ Create accounts and log in using email or Single Sign-On (SSO).​

●​ Admins must be able to:
○​ Create, edit, and manage surveys.
○​ Invite or remove users.
○​ Send out surveys to participants.
○​ Monitor and access all survey results.
○​ Grant specific permissions to users, including Participants and Program

Coordinators.
●​ Program Coordinators (PCs) must be able to:

○​ Create and manage their program instances.
○​ Invite students via join codes.
○​ Access and manage resources and data related to their specific programs

only.​

●​ Researchers (for future implementation):
○​ View and download survey results.
○​ Request new survey questions or changes to existing ones.
○​ Assign students to specific surveys.​

UI/UX Requirements
●​ Separate, role-specific dashboards for:

○​ Admins
○​ Program Coordinators
○​ Participants​

●​ Essential UI features include:

○​ Login and registration pages.
○​ A consistent color theme and custom logo for the homepage.
○​ A navigation bar with links to Home, Survey (with role-specific content),

and About.
○​ A redesigned survey interface that includes:

■​ Large, readable text and buttons.​
A progress bar to show completion status.

■​ A "Save" button to allow participants to save progress and return
later.

■​ A "Previous" button to navigate and edit previous answers.​

Technical & Resource Requirements
●​ Frontend: React.js, Next.js, Chakra UI
●​ Backend: Node.js, Express.js, NextAuth.js, MySQL, PGAdmin, Jest
●​ Cloud/DevOps:​

○​ AWS ECS for containerized deployment
○​ AWS Secrets Manager for managing sensitive configurations
○​ AWS S3 for file storage (e.g., downloadable PDFs)​

AWS RDS for relational database services
○​ AWS CloudWatch for logging and monitoring​

GitHub and GitHub Actions for source control and CI/CD

2.2 ENGINEERING STANDARDS

IEEE 26515-2018 – Agile Development Cycle

This standard emphasizes flexibility in the development process through Agile
methodologies. It promotes rapid adaptation to changing requirements via ongoing
stakeholder feedback and collaborative, iterative development. The goal is to allow for
continuous improvement rather than waiting until the end of the cycle to make changes,
particularly useful for evolving user needs.

Relevance to Our Project​
 Our project places a strong focus on user experience, making this standard highly
applicable. We will implement continuous Agile cycles to refine our design based on
frequent user feedback. Regular interviews with stakeholders will guide these iterations,
keeping the development responsive and collaborative.​
 To align with this standard, we will:

●​ Use Kanban boards to manage and track tasks.​

●​ Hold weekly team meetings to review progress and plan future work.​

●​ Allocate time during meetings for peer and advisor feedback.​
 This process ensures the project remains flexible and transparent throughout the
development lifecycle.

IEEE 829-1998 – Software Test Documentation

This standard outlines how to systematically document software testing to ensure
thorough coverage and traceability. It includes the creation of test plans, test cases,
expected outcomes, and results, helping teams identify gaps and maintain quality
throughout the development process.

Relevance to Our Project​
Our application contains many modular components that must be tested individually and
as part of the full system. By following IEEE 829-1998:

●​ We will develop a comprehensive testing framework.​

●​ Documentation will include test plans, test cases, and test logs for each
feature.​

●​ We will incorporate automated testing tools to verify consistency and behavior.​
 All testing documentation will be reviewed and discussed during weekly team
meetings to ensure alignment and accountability across the team.​

IEEE 1448a-1996 – Standard for Software Life Cycle Processes

This standard, aligned with ISO/IEC 12207, provides a structured framework for
managing the software life cycle from acquisition through retirement. It defines common
terminology and best practices for development, operation, maintenance, and reuse.

Relevance to Our Project​
We will use this standard to guide our planning and documentation processes, ensuring
consistency and quality across the project. Its adaptability to business practices supports
our iterative and modular development strategy.

IEEE 1621-2006 – Standard for User Interface Design and
Management

This standard offers best practices for designing user interfaces that are consistent,
accessible, and easy to use. It emphasizes usability and intuitive interaction patterns.

Relevance to Our Project​
One of our core goals is to redesign the current web application UI to improve the
overall user experience. By adhering to IEEE 1621-2006:

●​ We will ensure the interface is clear, accessible, and consistent for all user
roles.​

●​ The system will be designed for ease of navigation and readability, particularly
for participants with diverse levels of digital literacy.

3 Project Plan
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team uses a hybrid (waterfall+agile) approach for project management.

Approach:

Waterfall for High-Level Planning: Each team (Cloud, Backend, Frontend) has a set list
of base requirements and deadlines that are defined upfront.

Agile for Execution: Teams will break down the larger requirements into smaller,
manageable tasks and work in agile cycles (sprints). Agile allows for flexibility in
addressing unforeseen challenges and adapting to changes in requirements during
development. Frequent iterations help to prioritize critical features and continuously
deliver incremental value.

Coordination and Accountability: One team member will oversee progress, ensure
deadlines are met, and assist individual teams with managing their stories. This role
bridges the structured planning of Waterfall with the iterative adaptability of Agile,
ensuring smooth coordination and delivery.

Justification:

●​ Clear Deadlines: The Waterfall approach ensures that key deadlines are
established and adhered to, supporting project-wide consistency.

●​ Flexibility: Agile cycles allow teams to adapt to changing requirements without
derailing overall project timelines.

●​ Collaboration and Ownership: Individual teams retain autonomy over their agile
cycles, fostering ownership and accountability within their scope.

●​ Risk Mitigation: Frequent reviews and iterative progress help identify and address
risks early, reducing the likelihood of significant roadblocks.

Tools:

●​ Gitlab: Primarily used for managing our repo and merge requests. We also had
an issue board to keep track of each story that everyone was working on.

●​ Discord: Primary communication platform for the team and professor, with
dedicated channels for team discussions, stand-ups, and file sharing.

●​ Git and GitHub: Version control and collaboration via GitHub repositories, pull
requests ensure code review before integration.

●​ Automated AWS Deployment: GitHub Actions will automatically deploy changes
to AWS servers and run tests, allowing for a stable live environment

3.2 TASK DECOMPOSITION

Cloud

●​ AWS ECS:
○​ Set up an ECS cluster and define a service for the Node.js server.
○​ Configure the ECS task to run the Node.js server.
○​ Expose necessary ports on ECS for public access.
○​ Integrate ECS with GitHub Actions for automated deployments.
○​ Configure auto-scaling and load balancing for high availability.

●​ AWS RDS (MySQL):
○​ Provision and configure an RDS instance with MySQL.
○​ Set up security groups to allow connections from ECS and specific IPs.
○​ Define IAM roles for ECS to securely access RDS via Prisma.
○​ Configure and enforce SSL for API encryption.
○​ Finalize the connection between RDS and ECS for seamless

communication.
●​ GitHub/GitHub Actions:

○​ Set up a GitHub repository for CI/CD workflows.
○​ Lock down the main branch for stricter code integration policies.
○​ Define workflows in GitHub Actions to automate ECS deployment for the

Node.js server.
○​ Securely define secrets and environment variables for workflows.
○​ Configure workflows to build, test, and deploy upon pushes to the main

branch.

Frontend

●​ Improve user experience
○​ Import the frontend code from the previous team as the skeleton for this

website.
○​ Refactor the aesthetics of the website:

■​ Create a Figma design as a blueprint for the website.
■​ Use Chakra UI to implement the design created in Figma.

○​ API Calls:
■​ Refactor API calls and logic for improved efficiency.
■​ Learn and implement Next.js for efficient API calls and server-side

rendering.
■​ Refactor API calls and logic for Next.js server-side rendering.

Backend

●​ Exports for Data Results: Create detailed downloadable CSV files of Survey
Results, such as averages, demographics, and individual question responses.
Formatting and accessible data are dependent on User roles, Admin vs Program
Coordinator.

●​ Test Coverage:
○​ Increase test coverage for backend functions.
○​ Evaluate current testing strategies (e.g., automated Postman scripts) and

explore Jest for backend testing.
○​ Integrate API tests into the CI/CD pipeline for continuous validation.

●​ Database Usage: Use pgAdmin to manage user information and data storage in
SQL.

Retain MySQL for consistency with the current architecture to continue to build off of the
previous team's schema.

3.4 PROJECT TIMELINE/SCHEDULE

We have broken down the Spring Semester into 5 distinct phases, accompanied by 3
major demo targets. Each phase will approximately correlate to one month (4 weeks) of
the semester, with a major demo occurring after phases 2, 3, and 4. Of course, there will
be a final presentation, which could be considered demo 4.​
​
Below, there is an easier-to-read breakdown of all the different tasks and phases, as well
as who is responsible for each phase, denoted by CL for Cloud team, FE for Frontend
Team, and BE for Backend Team.​
​
Proper agile Software Engineering planning and organization would only plan 1-2
iterations out, which means our project will follow a hybrid agile/waterfall style.
Therefore, tasks after Phase 2 are technically not in scope yet and are considered
temporary planning items only.

Task Breakdown

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

1. Scope Creep (0.6)​
 Risk: Client requirements are not fully finalized, and additional features, such as custom
surveys, may be requested mid-project, leading to unplanned work and potential delays.​
 Mitigation Plan: Prioritize completing the core functionality of the application, focusing
first on refining and finalizing the first iteration. Once the foundational features are in
place, the team can assess and implement additional requests. After the core
infrastructure is established, cloud development team members can be reallocated as
needed to support other areas of development.

2. Project-Based Dependencies (0.4)​
 Risk: Certain components depend on others being completed before work can begin.
For example, backend development requires the RDS database to be fully configured
before integrating Prisma. Similarly, the database must be connected to the ECS
environment to allow testing in a production-like setting.​
 Mitigation Plan: Maintain a clear dependency map and ensure early setup of
foundational infrastructure (e.g., RDS, ECS). Assign tasks in a way that parallel progress
can be made where possible, and schedule integration tasks with buffer time to
accommodate upstream delays.

3. Timeline Slippage (0.8)​
 Risk: Due to the size of the team and the complexity of large deliverables, such as a
completed Figma design or the foundational Next.js app, it is difficult to assign exact
timelines. Development and testing delays may also occur unexpectedly.​
 Mitigation Plan: Break large goals into smaller, clearly defined tasks and assign them to
individual team members with specific due dates. Use project management tools
(alongside our project manager) to track progress against defined milestones. Build
buffer time into the schedule and maintain a list of optional or stretch tasks for team
members who finish early.

4. Unexpected or Out-of-Budget Costs (0.2)​
 Risk: With ECS's auto-scaling capabilities, operational costs may exceed the budget
during high-demand periods, such as during load testing or when surveys receive a
surge in responses.​
 Mitigation Plan: Monitor usage and costs closely through AWS billing dashboards. Set
budget alerts and consider using scaled-down instances or scheduled scaling to manage
cost spikes during testing phases.

3.6 PERSONEL EFFORT REQUIREMENTS

FE = Frontend (Alex, Max, & Isabelle)

BE = Backend (Nick and Charlie)

CL = Cloud (Matthew and Landon)

Task Time Per Task
(Hours)

FE - Create Figma Wireframe Designs 40

FE - Initial Implementation of Student 50

FE - Initial Implementation of PC 35

FE - Initial Implementation of Admin 10

FE - Misc. Bug Fixes/Extra Items 15

BE - API routes for pages 30

BE - Database setup/ updating tables 20

BE - Misc functions for frontend 35

BE - CSV files for survey results 15

CL - Teardown old Cloud infrastructure 10

CL - Setup new VPC & Repo 15

CL - Setup DB 20

CL - Setup ECR and ECS 30

CL - Setup ALB and Route 53 10

CL - Environments/Monitoring 15

CL - CI/CD 25

CL - Infra Planning 45

ALL - Weekly Advisor Meetings 30

3.7 OTHER RESOURCE REQUIREMENTS
This project involves building a survey system web application, there are no physical
parts or materials that are needed to complete the project. Other than physical tools,
there are essential resources that are needed, which include:

●​ AWS Tools

○​ ECS to define the service and run the Node.js server as well as integrate
with GitHub actions

○​ RDS for configuring and provisioning MySQL Database as well as API
encryption and IAM roles

○​ SecretsManager for securely storing, managing, and retrieving user data

○​ CloudWatch for monitoring and logging

○​ ALB to distribute incoming HTTP/HTTPS traffic across the ECS tasks to
avoid bottlenecks

○​ Target Groups to manage and route traffic to specific ECS services based
on health checks and load balancing rules.

○​ Security Groups applied to the ECS and ALB to control inbound traffic

○​ Route 53 to use a DNS name for the app and ACM for a certificate to use
out app on HTTPS

○​ Cloudshell to interact with AWS resources using the command line
directly in the browser without the need for local configuration

●​ IDEs/Programs/Libraries

○​ IntelliJ, Visual Studio Code, or any other IDE

○​ MySQL database to create schemas that will be hosted on our AWS
applications

○​ Typescript for our programming language

○​ Chakra UI for frontend styling

○​ Node.js and the runtime environment to connect our frontend and
backend logic

○​ GitHub repository for CI/CD and to have a set main branch

○​ GitHub Actions to set up CI/CD workflows to automate ECS deployment
to the Node.js server

○​ Postman for testing our API endpoints for frontend and backend
communication

●​ Project Management Tools: Gitlab will be our team's source of project
management. This allows us to create epics, stories, issues, milestones, and
comments for our team’s project development.

4 Design

4.1 DESIGN CONTEXT

4.1.1 BROADER CONTEXT

Area Description Examples
Public health,
safety, and
welfare

The application collects sensitive
user data (age, gender, ethnicity,
etc.) and therefore must ensure
privacy and security. This helps
foster trust and psychological safety
for users completing the survey.

Implementing encryption and secure
authentication reduces the risk of data
breaches; provides academic programs
with insights to improve student
well-being and performance.

Global, cultural,
and social

The survey system must be
inclusive of diverse identities and
experiences. It should avoid bias in
how data is collected and
interpreted, particularly for
underrepresented groups.

Including ethnicity and gender options
beyond binary categories, ensuring
UI/UX accessibility for users with
different backgrounds or abilities.

Environmental As a digital solution, the
environmental impact is relatively
minimal. However, hosting and
infrastructure choices (e.g., cloud
servers) contribute indirectly to
energy use.

Choosing AWS regions with lower
carbon footprints or using serverless
functions to reduce idle computing
resources.

Economic The tool helps academic programs
evaluate and improve curriculum
based on real student outcomes,
which can lead to better educational
investments and funding use. It
must also remain cost-effective for
institutions to adopt.

Making the system open-source or
low-cost for educational institutions,
minimizing development costs through
efficient planning and use of existing
technologies.

4.1.2 Prior Work/Solutions

This project expands upon the initial version developed by an Iowa State University
Senior Design team in 2023. That team established the foundation by implementing
survey creation, user management, and response storage.

However, the initial version had several limitations:

●​ The user interface was outdated and lacked intuitive navigation.

●​ Students received minimal visual feedback after completing surveys.

●​ The platform was not optimized for scalability or cloud deployment.

●​ Cloud setup did not match previous technical documentation

Our team addressed these challenges through the following improvements:

●​ Modernized UX/UI using React for a more accessible and engaging student
experience.​

●​ Visual feedback features to help students reflect on their own data and
progress.​

●​ Cloud deployment on AWS, supported by CI/CD pipelines, to ensure
scalability, reliability, and long-term maintainability.​

These enhancements enable the platform to better serve its dual audience—students
and administrators—while aligning closely with the goals of the LSAMP initiative.

4.1.3 Technical Complexity

Cloud​
The infrastructure is built on AWS using a combination of Route 53, Application Load
Balancers (ALBs), ECS Fargate, and Aurora MySQL, structured within a custom Virtual
Private Cloud (VPC).

●​ Our new infrastructure separates public-facing components (DNS and ALBs)
from our compute and data layers, which are placed on private subnets to
minimize exposure and follow least-privilege network design.

●​ Services are deployed as independent ECS tasks for the frontend and backend,
promoting fault isolation and scalability

●​ All infrastructure is deployed through an automated CI/CD pipeline that builds
container images and registers new task definitions using Kaniko, supporting
secure, repeatable deployments without requiring elevated privileges.

●​ Health checks and automatic rollbacks ensure that failed deployments do not
disrupt availability, while internal service communication is encrypted and
isolated.

 This design reflects industry-standard practices for building reliable, secure, and
maintainable cloud-native systems.

New User signup is protected by randomly generated 6-character codes that are
generated by Admin and Program Coordinator Users. These codes validate a User to
have access to the survey and assign the user's role without any manual elevation
needed.

Survey Result data is formatted and downloadable for Admins by program for Program
research, as well as proof of program effectiveness for funding.

Backend

The backend is built using NodeJS and the Express framework, utilizing the controller,
router, and service standard for backend systems. This architecture allows new routes to
be scaled and developed quickly by reutilizing existing folder’s routes. .

●​ Database tables are kept modular with their own folder for any routes accessing
or inserting data in the database ex. Codes, links, Program, questions.

●​ Each tables folder has a router, controller, and service. Router handles the
routing of each request and calls the subsequent function in the controller. The
controller methods handle any request parameter, the responses to send back to
the client, and calls the correct Service function. The service function query the
database based on any of the request parameters and handles any of the
business logic of inserting or formatting data.

●​ The app.js file deploys the NodeJS server which is able to handle any of the
routes in the API folder. The dbconfig.js file manages connection to the database
for any necessary queries.

●​ Package.json manages any Node dependencies that need to be installed for the
app to run, this allows for the web tool to be set up and tested locally seamlessly.

Frontend

The frontend is built using the Next.js framework, along with React using Typescript and
Chakra UI.

​

Folder Breakdown

/public: images, fonts, colors

​ /images: contains all the different images used in the app
​ /styles: contains the styling for different components of the app

/src: Stores all “actual” code

​ /app: houses main route location and large components. Each subfolder defines
a URL route. For example, /app/about refers to the “https://MyStemGrowth.com/about”
page

​ /components: contains the implementation for the different components, such as
the different dashboards, navbar, footer, etc.

​ /constants: Stores API endpoints

​ /context: Houses authorization and localStorage functions used with user
verification and information accessed on later screens (Ex: getting the user’s ID on the
home page)
​
​ /types: defines modules for anychart and jsPDF

Package.json: stores dependencies for node (changes upon updating dependencies)
​
.gitignore: files or folders not pushed to Git with commits

Additional Information

Additionally, within the /app directory, the following naming convention has been defined
for each URL route (subfolder):​

​
Example: > (user role)-(brief-description)​

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Backend Role Management Design

To simplify access control and reduce the need for ongoing administrative overhead, we
adopted a hands-off approach to user role management. Instead of manually assigning
roles through an admin interface, the backend uses pre-generated signup codes, each
mapped to a specific role or permission level. These codes are created and distributed
by authorized administrators and are tied directly to backend logic that assigns the
appropriate role upon registration.

When a user signs up using one of these codes, their role is automatically determined
and stored securely in the database. This design ensures that only users with valid
codes gain access to restricted functionality, without requiring human intervention
post-signup.

By shifting role assignment to the signup flow, we eliminate potential points of failure
associated with manual role management and enforce consistent privilege levels across
all accounts. The system also allows for easy expansion of roles by generating new
codes as needed, without requiring changes to the underlying codebase or user
interface.

Separation of Frontend and Backend Services

We redesigned the architecture of the system to treat the frontend (Next.js/React) and
backend (Node.js/Express API) as separate services. This modular design improves
scalability, maintainability, and security by establishing a clear boundary between the
user interface and application logic.

Both services are deployed as ECS Fargate tasks behind separate Application Load
Balancers and operate within isolated private subnets inside a Virtual Private Cloud
(VPC).

●​ This structure enforces the principle of least privilege: the backend is not directly
exposed to the internet, and the database is only accessible to the backend
service. Communication between components is encrypted and tightly controlled
through security groups and IAM roles, ensuring that only authorized traffic flows
between services.

●​ Impact: This change allows for a separate team structure, allowing for Cloud,
Frontend, and Backend teams to work concurrently with minimal
interdependency. Each team was able to develop, test, and deploy its respective
components independently, which accelerated our development cycles and
reduced the risk of cross-team bottlenecks. Overall, the redesign supports a
secure, scalable, and production-ready cloud-native architecture.

Dashboard Design

We have intentionally tailored the dashboards to address the distinct needs and
workflows of each user role. The student dashboard uses a scrolling layout designed for
simplicity and mobile-friendliness, reflecting the way students are most likely to interact
with the web application. This approach helps ensure an intuitive experience and
minimizes potential confusion by presenting information progressively and in a clear,
focused manner.

By contrast, the admin dashboard presents all key program information at a glance
within a single view. This design recognizes that administrators typically require quick,
comprehensive access to data and are less likely to engage in prolonged interaction with
the application. By providing an at-a-glance overview, we support their need for
efficiency and streamlined decision-making.

4.2.2 Ideation
We needed to determine the best way to deploy and manage our survey application
infrastructure on the cloud. Our key objectives were:

-​ Security (minimal public exposure)
-​ Scalability
-​ Maintainability
-​ Developer independence (modular responsibilities)
-​ Automation through CI/CD

To identify the best path forward, we explored multiple deployment and hosting
strategies, evaluating each based on the above criteria. Our ideation process included
brainstorming sessions, trade-off analysis, and reviewing AWS architectural best
practices. We loosely followed the Lotus Blossom technique, where our core design
problem was deploying a secure, scalable cloud infrastructure—was placed at the
center, and possible solutions branched out.

Options Considered:

1.​ Monolithic Deployment on a Single EC2 Instance

Pros: Simple to set up; all-in-one environment.

Cons: Difficult to scale; poor fault isolation; security concerns due to public exposure; not
production-grade.

Reason for Rejection: Didn’t support separate team workflows and lacked scalability/fault
tolerance.

2.​ Serverless Architecture using AWS Lambda and API Gateway

Pros: High scalability and low maintenance; no need to manage infrastructure.

Cons: Complex to manage multiple functions; cold start latency; state handling for
surveys would be difficult; vendor lock-in.

Reason for Rejection: Introduced complexity in coordinating frontend/backend
integration and limited control over networking and compute lifecycle.

3.​ Docker Containers on Amazon ECS with EC2 Launch Type

Pros: More control over infrastructure; cost-effective for large workloads.

Cons: Requires EC2 instance management; overhead in scaling clusters and patching
hosts.

Reason for Rejection: Introduced unnecessary infrastructure management overhead and
reduced the benefits of containers as a service.

4.​ Managed Kubernetes via Amazon EKS

Pros: Industry standard; extremely flexible and powerful.

Cons: High complexity and learning curve; overkill for a relatively simple application;
slower iteration for a student project.

Reason for Rejection: Complexity outweighed benefits for our use case; required more
time and expertise than feasible.

5.​ Fargate-based Microservices with Independent Load Balancers

Pros: Fully managed compute; no infrastructure to patch; secure; ideal for isolated
service deployment; integrates well with CI/CD and IAM.

Cons: Slightly more cost than EC2 but worth it for reduced management effort.

Reason for Selection: Met all goals: high security (private subnets), isolation of services
(frontend/backend), automation (CI/CD with Kaniko), and scalability with low overhead.
Enabled modular team development and deployment.

4.2.3 Decision-Making and Trade-Off

For our decision-making process, we began by clearly defining the key requirements and
objectives of our project. We then conducted research to identify a range of potential
solutions that could meet these needs. For each option, we developed a detailed
pros-and-cons analysis to evaluate its strengths and limitations relative to our goals. This
structured approach allowed us to systematically compare the alternatives and ultimately
select the solution that best aligned with our project’s requirements.

4.3​ FINAL DESIGN

4.3.1 Overview

Backend Overview

Our backend is built using Node.js with the Express framework, providing a lightweight
and efficient server environment for handling API requests. This server acts as the
central hub for processing data submitted from the frontend, such as form inputs and
survey responses.

Each API route is defined using Express, enabling clean, modular handling of different
types of requests for example user authentication, program data retrieval, survey result
graph generation. These routes are designed to enforce validation and security best
practices, ensuring only authorized requests are processed.

The server runs as an isolated cloud service and communicates securely with our
database and frontend interface. By keeping the backend logic separate and stateless,
we ensure that the system remains scalable and easy to maintain, even as the
application grows.

Frontend Overview

Our web application is developed using Next.js with TypeScript and uses Chakra UI for
UI components. The application is structured around three distinct user flows: the
student flow, the admin flow, and the program coordinator flow.

In the student flow, users can complete surveys, visualize their results through
interactive graphs powered by AnyChart, and export their results as PDF documents for
personal reference.

In the admin flow, administrative users have the ability to generate admin and program
coordinator codes to manage user roles. Admins can also access detailed program
information, including the option to download both survey questions and survey results in
CSV format for further analysis.

In the program coordinator flow, program coordinators can view, edit, or create
programs, generate program-specific codes to invite students, and customize the
program’s resource page to tailor support materials for student participants.

Cloud Overview

Our project is hosted entirely in the cloud using Amazon Web Services (AWS), which
allows us to deliver a secure, scalable, and highly available application without
managing physical servers. The cloud infrastructure handles everything from routing
website traffic, running our code, storing data, and automatically deploying updates
when the code changes.

●​ Frontend Web Server (User Interface)​
The part of the website that users see and interact with (built using React) is
hosted in the cloud and served securely through a system called a Load
Balancer. When someone visits mystemgrowth.com, this service routes their
traffic to the frontend application running in the cloud.​

●​ Backend Server (API)​
 The backend (built with Node.js) processes form submissions, survey
responses, and handles secure communication with the database. It runs as a
separate service in the cloud and is only accessible through authenticated
channels (e.g., from the frontend app or admins).​

●​ Cloud Database​
 All user responses and program data are stored in a secure AWS database
service through Aurora MySQL. This database runs privately in the background
and is not directly exposed to the internet.​

●​ Automated Deployment (CI/CD)​
 Every time our team updates the code, it is automatically tested, packaged, and
deployed to the cloud using GitLab’s CI/CD pipeline. This ensures that the
newest version of the website is live within minutes, with no manual setup
needed.​

●​ Domain and Routing (DNS)​
 We use a service called Route 53 to manage traffic for our custom domain,
mystemgrowth.com. It knows whether to send traffic to the frontend (website) or
the backend (API), depending on what’s being requested.​

●​ Monitoring and Logs​
 Our infrastructure is constantly monitored using CloudWatch, which helps us
detect problems, view server logs, and troubleshoot issues quickly.

4.3.2 Detailed Design and Visual(s)
Cloud Network Architecture (VPC + ALBs + ECS + RDS)​

​

CI/CD Workflow with GitLab Pipelines and Kaniko​

Route 53 DNS and Domain Routing Setup​

Service Deployment Lifecycle

4.3.3 Functionality

Admin Functionality:

-​ The highest privilege role focuses on program management. “CEO”: Hands-off
approach with minimal expected contact, effort, and time dedication. Primary
Function: Invite future PC users and change user roles.

-​ They can:
-​ Share join code with user intended to be a Program Coordinator
-​ Share join code with user intended to be an Admin role
-​ View current Admins/Program Coordinators
-​ View all Programs and download specific program data (.csv file)

Program coordinator Functionality:
-​ The middle privilege role is to act as the leader of a particular program instance

(e.g., Iowa State). One person is in charge of the activities of a single program
instance. (NTH: multiple PC’s per Program Instance)Likely the most exhaustive
role with the most responsibilities.

-​ They can:
-​ Create an account with the PC role
-​ Create a new Program Instance
-​ Creates a unique join code for inviting Students
-​ Select a certain Program Instance to view
-​ View information of a particular Program Instance via a drop-down menu
-​ View the number of students attached to the selected Program Instance
-​ View a table of students attached to the selected Program Instance
-​ Modify Program resources

Student Functionality:
-​ The lowest privilege role focuses on taking surveys and viewing results. Primary

Function: Join the program, take and view survey results
-​ They can:

-​ Create an account using a given Program Instance code (Ex: ISU2025)
-​ View the program-specific “Resources” page
-​ Take survey
-​ View survey results
-​ View the “About” page

4.3.4 Areas of Challenge
1.​ Managing Scope Creep

a.​ As we gained technical momentum and clarity on implementation
timeframes, the team started proposing more features than initially
scoped.

b.​ The original plan risked becoming too ambitious, jeopardizing deadlines
and deliverable quality.

2.​ Balancing Technical Progress with User Requirements
a.​ Some desired features were technically feasible but added significant

complexity (e.g., real-time updates or user analytics dashboards).
b.​ Users (students and admins) had varying expectations for what the

platform should deliver—requiring prioritization.
3.​ Defining and Aligning Requirements

a.​ Lack of clear definitions for user roles, permissions, and survey workflows
early in the project.

b.​ Differences in interpretation among team members and stakeholders
caused implementation delays.

How We Addressed These Challenges

1.​ Re-scoping and Prioritization
a.​ We held structured meetings to define a clear Minimum Viable Product

(MVP) and set aside non-critical features.
2.​ Stakeholder Alignment

a.​ Weekly check-ins with our advisor, Dr. Rover, helped validate our revised
scope and ensure we stayed aligned with expectations.

3.​ Backlog Management
a.​ We created a “Nice-to-Have Features” backlog to document ideas for

potential future development by other teams.
.

4.4 TECHNOLOGY CONSIDERATIONS
1. Frontend: Next.js with React and Chakra UI
Strengths:

-​ Modern, performant framework with support for server-side rendering.
-​ React provides reusable component structure and integrates well with state

management.
-​ Chakra UI offers accessible, responsive components out of the box, speeding up

development.

Weaknesses:

-​ Learning curve for integrating Chakra UI’s theme system.
-​ SSR and API routing in Next.js can be confusing to new developers.

Trade-offs:

-​ We chose Chakra UI over Tailwind for developer velocity and accessibility, even
though it offered less design flexibility.

2. Backend: Node.js with Express
Strengths:

-​ Lightweight and fast, with non-blocking I/O suitable for handling survey
responses.

-​ Massive ecosystem (npm), allowing rapid integration of middleware (e.g.,
validation, auth).

Weaknesses:

-​ Less structured compared to typed backends (e.g., Java Spring Boot), requiring
extra care in code organization.

Trade-offs:

-​ Selected over Java or Python backends for rapid prototyping and the team's
familiarity, despite its weaker type safety.

3. Cloud Hosting: AWS (Route 53, ALB, ECS Fargate, Aurora MySQL)
Strengths:

-​ Highly scalable and production-grade infrastructure.

-​ Fargate removes the need for server management; ECS task separation
improves fault isolation.

-​ Aurora MySQL offers high availability and managed scaling.

Weaknesses:

-​ Complex setup requiring deep understanding of VPCs, IAM, and networking.
-​ Vendor lock-in and costs can increase as usage grows.

Trade-offs:

-​ Chose AWS for long-term maintainability and compatibility with industry
practices, over simpler options like Heroku.

5 Testing

5.1 UNIT TESTING
For the front end created with React, the Jest Testing Library can write unit tests for
React components, simulating user interactions and verifying their behavior. Jest can
also be used to test functions and simulate HTTP requests. For the back-end, Node.js
code can be tested using Jest to assess the correctness of API endpoints and the
back-end logic. Additionally, AWS services can be incorporated into the testing process
by setting up isolated environments for testing using Docker containers, enabling the
emulation of real AWS resources. In this way, unit testing in this web project integrates
seamlessly with the AWS infrastructure, React front-end, and Node.js back-end, helping
to identify and rectify issues early in the development cycle to prevent problems from
arising.

5.2 INTERFACE TESTING
There are multiple interfaces to be tested for our design. Users who access our
application will be prompted to enter login credentials or create an account. These
credentials will need to be veried and stored. We plan to use JSON Web Tokens to
authenticate user access. A capability that will be tested is retrieving survey data from
the back-end and displaying it to the user’s prole on the front end. While the users take
the survey, the information they enter and submit will be transmitted to the back-end to
be stored.

5.3​ INTEGRATION TESTING
There are two critical integration paths we will need to test in our design:
1. Our Amazon EC2 instance and Amazon RDS will both need testing to ensure our web
application can be built and run on our server with access to get and post data to our
database. We will need network stress testing to ensure our web app is up and running,
dependency testing to ensure the web application can be built, and testing over API calls
and activity on the EC2. Some tools we may use are Amazon CloudTrail and Datadog.
2. Front-end tests over React and JavaScript. We plan on using Jest to test whether our
React components are working properly. If a component were to regress by someone
accidentally changing or adding to the UI, our tests can catch these changes.

5.4 SYSTEM TESTING
Considering that our project is entirely software, the “system” that we are testing is the
entire web tool. Testing the entire system, in our case, involves ensuring an overall
positive user experience. This includes what the user sees and how they can tell if they
receive correct data. This can be tested using unit testing with Jest, as mentioned earlier,
and it should be tested on parts of the web tool that heavily involve front-end and
back-end communication. Examples of where this is present include when a user tries to
log in and when a user imports data, expecting a result in graphics

5.5 REGRESSION TESTING

To prevent new updates from breaking existing functionality, we implemented a
combination of version control, containerization, and CI/CD validation within our cloud
infrastructure.

Code Review Process: All code changes require human review before being
integrated. Smaller Features will require at least one team member to review and
approve the changes. Larger Features: will require approval from two team members
to ensure code quality, maintainability, and compliance with project standards.

Rollback Support via ECS and ECR:​
 After migrating to Amazon ECS, we are now storing versioned Docker images in
Amazon ECR. This setup allows us to quickly revert to a stable version if a
deployment fails or introduces regressions.

CI/CD Pipeline Safeguards:​
 Our GitLab CI/CD pipelines automatically build and test both the frontend and
backend services prior to deployment. These steps include preliminary checks that
help detect and prevent faulty builds from being pushed to production, maintaining
overall stability and confidence in each release.

5.6 ACCEPTANCE TESTING

Requirement Validation:

The team will conduct a walkthrough of the project, addressing each requirement.
A comprehensive checklist will be used during this process to track progress and
confirm that all larger specifications have been met. This step ensures internal
confidence in the product's quality before presenting it to the client.

Client Presentation and Feedback:

The completed project will be presented to the client for review. This presentation
will confirm that the project aligns with their expectations and to collect feedback.
Following agile practices, we will hold regular feedback sessions throughout
development. This approach ensures the final product is ready for approval upon
completion

5.7 USER TESTING

As developers, we frequently put on our “user hats” and act as if we were a user using
our software for the first time when testing. This process is good for nailing out initial
kinks and bugs. However, it doesn’t get everything. That’s why we would frequently meet
with Dr. Rover and Ally from the University of Iowa and show them our progress to get
any and all feedback about design changes, tweaks to some user flows, or just some
spelling changes we might’ve missed.

5.9 RESULTS

Postman request for testing all users

Test fetching questions from backend

6 Implementation
6.1 DESIGN ANALYSIS
Our implemented design performs reliably and meets the client’s core functional
requirements, demonstrating a strong alignment with the original project goals.
What works well:

-​ User Interface/User Experience (UI/UX):
-​ The interface is intuitive and easy to navigate, which both Dr. Rover and

Ally from the University of Iowa responded positively to. This works well
because we followed usability best practices and incorporated client
feedback during development.

-​ Cloud Infrastructure
-​ The cloud side of the project uses ECS with CI/CD to automatically

update the production environment when a pipeline succeeds.
Additionally, by using AWS ALB with Route 53 and SSL certificates, the
production environment is set up with its custom DNS name through
HTTPS for secure traffic. This was all done in the intent to not have the
need for a cloud team in the future for any other teams that may work on
this project.

-​ Backend
-​ All API routes for each page of the design work with the frontend. Our

SQL database properly stores users and whether they are students,
program coordinators, or admins. It also stores the student's information/
question responses used for the survey results.

The main things that did not work as expected were features from our original design
that we didn’t have time to fully implement. Including the ability to edit survey questions
after creation, full support for the researcher role, including managing and viewing
survey results, Integration with NextAuth for login and account creation, which we initially
planned but later replaced with a simpler approach due to time constraints.​

On the cloud infrastructure side, we also encountered several unexpected challenges:

●​ We didn't realize our CI/CD runners couldn't use Docker in privileged mode,
which broke our original plan to use Docker-in-Docker for builds,To address this,
we switched to using BuildKit and Kaniko, and had to rework our CI/CD scripts
accordingly.​

●​ We also had to separate the ECS tasks for the backend and frontend, instead of
running them together as originally designed, Additionally, we discovered we
needed an Application Load Balancer (ALB) for the backend service in order to
expose it properly, which added more configuration work and complexity.​

7 Ethics and Professional Responsibility
Building Trust: Honest communication creates a foundation of trust among group
members.

Enhancing Collaboration: Honest communication fosters an environment where group
members feel comfortable sharing ideas and giving constructive feedback.

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
Area of

Responsibility
Definition Relevant Item from

ACM Code of Ethics
Team Interaction /

Adherence

Professional
Responsibiliti
es

Fulfill
commitments,
communicate
honestly, and
maintain
standards.

1.3 Be honest and
trustworthy.

Our team consistently
held weekly meetings
and provided updates on
progress and blockers.
We documented delays
or issues transparently
and revised plans as
needed.

Responsible
Conduct of
Research

Ensure integrity
and accuracy in
work and avoid
fabrication or
falsification.

1.5 Respect the work
required to produce
new ideas,
inventions, creative
works, and
computing artifacts.

We attributed third-party
tools and clearly
documented our
references in both code
and presentations. We
avoided copying code
from unauthorized
sources.

Quality of
Engineering
Work

Aim for
high-quality,
robust, and
sustainable
solutions.

2.5 Give
comprehensive and
thorough evaluations
of computer systems
and their impacts,
including analysis of
possible risks.

We performed multiple
rounds of testing,
including edge cases,
and collected feedback
from test users. We
tracked issues with
GitHub and addressed
critical bugs promptly.

Leadership
and Mentoring

Support
development of
peers and junior
members and
foster ethical
behavior.

3.1 Ensure that the
public good is the
central concern
during all
professional
computing work.

Our senior developers
helped onboard new
contributors and
provided walkthroughs
for backend setup and
authentication modules.

7.2 FOUR PRINCIPLES
Area Beneficence Nonmaleficence Respect for autonomy Justice

Public health,
safety and
welfare

The purpose of this
tool is to help
students get the
resources and
education they need
to grow
academically but
also personally.

Students will
benefit from
understanding
what areas they
excel in and what
areas they need to
improve in. This
will help them in
their careers and
with their journey
in school, as they
will know what
areas to spend
more time
improving.

Allowing students to
understand their
strengths and
weaknesses will help
them make an
informed decision
about their future
without forcing them
to choose a certain
path.

Helping students get
resources to improve in
areas they may be weaker
in because of a lack of
exposure to STEM related
courses or concepts will
help level the playing field
and give them a fairer
chance at success.

Global,
cultural and
social

Helping
underrepresented
communities
highlights our
project’s focus on
humanity. The
biggest goal of our
project is to help
those who
traditionally have
been excluded from
STEM fields get
opportunities they
might not have
otherwise.

Introducing
communities who
are
underrepresented
in STEM to our
program will
benefit those
communities by
giving them more
information and
resources. This
complies with the
idea of avoiding
causing harm.

Our project aims to
expose underserved
communities to STEM
majors and careers.
We will disclose
pertinent information
about these career
paths to help students
decide if this is the
right choice for them.

A major goal of our project
revolves around giving
equal opportunities to those
in cultural, social and
economic communities that
are underrepresented in
STEM fields.

Environmental While our project
itself doesn’t directly
impact the
environment, If the
students who
participate in the
program lead a
career in
environmental
sciences or
something related,
they could contribute
positively to

Our project does
not deplete or
harm our
environment of its
resources.

Introducing students
to STEM majors
involved in protecting
our environment can
equip students with
the resources and
knowledge to
contribute towards
this effort if it is
something that
interests them.

By involving individuals
from underrepresented
communities in
environmental fields, we
can help create
opportunities for them to
address environmental
challenges that directly
impact their communities.
This not only benefits these
communities but also
contributes valuable
insights and solutions to

protecting our
environment.

broader environmental
issues.

Economic Students who do a
career in a STEM
field will likely see a
positive impact on
their financial
situation.

A career in a
STEM field
typically does not
harm a person
financially, and in
fact tends to have
the opposite
impact.

Exposing students to
STEM careers may
present opportunities
to better their
financial situation
through high-paying
careers. Introducing
these opportunities
gives students
autonomy over their
finances.

Helping all students have
more equal opportunities to
STEM careers also gives
more equal opportunities to
financial well-being.

7.3 VIRTUE
Compassion: Combining empathy and action to alleviate the plight of others

Justice: Ensuring fairness by refraining from causing harm or disadvantage to others
and actively working to restore justice when needed

Integrity: Aligning our conduct with the way we view the world by backing up our words
and beliefs with our actions.
Our team has shown compassion by actively working to provide underrepresented
students with resources and opportunities in STEM. This effort demonstrates a
commitment to alleviating the disparities they face, combining empathy for their struggles
with actionable solutions such as mentorship, academic support and access to STEM
programs.
By focusing on bridging the gap for students traditionally underrepresented in STEM
fields, our team promotes justice. We are making an effort to create equitable access to
education, offering opportunities to address systemic inequalities, and building a
supportive community, which reflects our commitment to restoring fairness and providing
everyone with their due chance to succeed.
Our team has upheld integrity by aligning our actions with our mission to empower
underserved communities in STEM. We have demonstrated this virtue by contributing
towards the IINSPIRE program and ensuring all team members are held accountable for
supporting the project’s goals.

Alex:
Virtue I have demonstrated: Adaptability
Why it’s important: Adaptability is important because the needs of our client and the
structure of our team is dynamic, so flexibility is crucial
How I have demonstrated it: I stepped into a leadership role to address the evolving
needs of our team and to act as a liaison between our group and our client.
Virtue I have not demonstrated: Patience
Why it’s important: It’s important to maintain a composed demeanor during challenging
situations or when facing setbacks
How I can demonstrate it: I can demonstrate patience by taking a step back to assess
the situation calmly and provide thoughtful responses to feedback

Charlie:
Virtue I have demonstrated: Dedication
Why it’s important: Dedication ensures sustained focus toward achieving long term goals
How I have demonstrated it: I have demonstrated dedication by consistently preparing
and organizing the necessary resources to ensure our project is fully equipped for
implementation next semester
Virtue I have not demonstrated: Assertiveness
Why it’s important: Assertiveness is important for effectively communicating ideas and
opinions
How I can demonstrate it: I can demonstrate assertiveness by confidently expressing my
thoughts during meetings and respectively challenging ideas when necessary

Isabelle:
Virtue I have demonstrated: Humility
Why it’s important: Humility is important for recognizing areas for growth and embracing
feedback to improve our project
How I have demonstrated it: I have demonstrated humility by actively seeking input from
students in the program and experts in Human Computer Interaction and website design
Virtue I have not demonstrated: Perseverance
Why it’s important: It’s essential for pushing through challenges and staying committed
to the project’s goals even when progress feels slow or obstacles arise
How I can demonstrate it: I can demonstrate perseverance by continuing to work through
technical difficulties or unexpected challenges

Landon:
Virtue I have demonstrated: Compassion
Why it’s important: Compassion allows team members to build trust and support each
other by addressing challenges with kindness and empathy
How I have demonstrated it: I have demonstrated compassion by being understanding
toward my teammates’ challenges and offering help when they need it
Virtue I have not demonstrated: Resilience
Why it’s important: Resilience is important for bouncing back from setbacks and
maintaining a positive outlook despite challenges
How I can demonstrate it: I can demonstrate resilience by staying motivated despite
setbacks, learning from failures and encouraging others to persevere

Matthew:
Virtue I have demonstrated: Integrity
Why it’s important: Integrity is important for establishing trust and credibility with others
by aligning actions with our values and principles
How I have demonstrated it: I take ownership of my responsibilities and follow through
on commitments such as meeting deadlines, participating in group meetings and helping
other group members when needed
Virtue I have not demonstrated: Collaboration
Why it’s important: It’s essential for creating a cooperative team environment where
everyone’s contributions are valued
How I can demonstrate it: I can demonstrate collaboration by seeking input from others
and working closely with teammates to achieve our common goals

Max:
Virtue I have demonstrated: Vision
Why it’s important: Vision is important because it guides our efforts towards creating an
impactful, lasting change
How I have demonstrated it: I have demonstrated this value by outlining the big picture
for our project design and contributing ideas to improve our project
Virtue I have not demonstrated: Pragmatism
Why it’s important: It is essential for making practical and realistic decisions that align
with the team’s goals and resources
How I can demonstrate it: I can demonstrate pragmatism by evaluating the feasibility of
my ideas, considering potential challenges, and making adjustments based on practical
considerations

Nick:
Virtue I have demonstrated: Inclusivity
Why it’s important: Inclusivity ensures that everyone feels valued and heard. Inclusivity
strengthens team cohesion and celebrates diverse perspectives.
How I have demonstrated it: I have demonstrated inclusivity by making sure all team
members’ opinions are included in discussions and decision-making
Virtue I have not demonstrated: Curiosity
Why it’s important: It’s important for driving innovation and continuous learning because
it encourages the exploration for new ideas and perspectives
How can I demonstrate it: I can demonstrate curiosity by constantly asking questions
and exploring different approaches to improve our project

8 Conclusions
8.1 SUMMARY OF PROGRESS

Overall Design Achieved:

●​ We successfully developed and deployed a fully functional, cloud-native web
application:

○​ Frontend built with React/Next.js and Chakra UI for responsiveness and
accessibility.

○​ Backend built with Node.js and Express for efficient, RESTful API
communication.

○​ AWS-based infrastructure using ECS Fargate, Route 53, ALBs, and
Aurora MySQL for secure, scalable deployments.

●​ Our architecture supports modular development and future expansion, allowing
future senior design teams to build on a stable foundation.

Team Accomplishments:

●​ Created a secure, role-based user onboarding flow, using randomly generated
codes that:

○​ Assign proper access roles and eliminate manual user creation by
admins.

●​ Implemented a dashboard for Admins and Program Coordinators:​
Allows them to view and export survey results by user and program.

○​ Enables ongoing data collection for program effectiveness reporting.

●​ Developed clean API documentation and modular code structure to ease handoff
to future teams.

●​ Overcame technical and team collaboration challenges through clear division of
responsibilities across frontend, backend, and cloud groups.

●​ Developed a secure and scalable cloud platform that protects backend services
and database access within private AWS subnets

●​ Set up an automated CI/CD pipeline using GitLab to deploy frontend and
backend services with no manual steps

●​ Enabled new developers to deploy and test code in the cloud automatically with
each push

8.2 VALUE PROVIDED

User-Centered Design and Needs Met

For Students:

●​ Before: Students had no visualization or access to past surveys.​

●​ Now: Students can log in and see interactive bubble graphs representing their
STEM growth across six outcome areas.​

●​ Value: This empowers students to reflect on their progress and increases
engagement. Several test users reported the visualizations made their results
“feel more real.”

For Admins/Coordinators:

●​ Before: Survey data was locked away in backend tables with no easy way to
explore or export results.​

●​ Now: Admins can view aggregated survey responses, filter by program, and
export formatted results.​

●​ Evidence: During demo sessions, our advisor noted the reporting features were
essential for grant reporting and program evaluation.

8.3 NEXT STEPS

Our team has consistently planned for future groups and their contributions. In the above
sections describing each user functionality, you will see the NTH label, which means it is
“Nice to Have”. These features are things either the Senior Design team or Dr. Rover
have identified as items for the next team to tackle.

​
​
Here are the future items for each user:​

Admin

-​ Invite/Remove Researchers
-​ Add, remove, or edit survey questions

Program Coordinator

-​ Change/edit the join code for a Program Instance
-​ Allow multiple PC’s for a single Program Instance
-​ View an average results graph for all students in the selected program
-​ Close a survey and set a new survey to be the default survey shown to students
-​ View a particular student’s graph (selected from the user list)
-​ ⭐Allow a PC to move/transfer students from Program Instance to a new

Program Instance without requiring a new account. This will allow for surveys
taken under a different Program Instance to be viewed by the Student regardless
of what Program Instance they are currently a part of.

Student

-​ Compare multiple surveys
-​ Enable switching between programs
-​ Enable being transferred to a new program
-​ Change/Edit account information

​
Researcher

-​ Create an account
-​ Store/View survey results
-​ Share/Download Data
-​ Methods to visualize survey results

9 References
[1] J. Farmer, "Visual Analytics in Education: A Framework for Data-Informed Student
Support," Journal of Educational Technology Systems, vol. 49, no. 2, pp. 145–161, Dec.
2020.
[2] P. N. Howard, A. Duffy, and D. Freelon, "Opening Closed Platforms: The Ethics of
Interfacing," IEEE Internet Computing, vol. 20, no. 3, pp. 25–31, May–Jun. 2016.
[3] S. Krishna and S. B. Jha, "Survey Systems in Academia: An Evaluation Framework,"
IEEE Transactions on Learning Technologies, vol. 14, no. 1, pp. 80–90, Feb. 2021.

10 Appendices

APPENDIX 1 – OPERATION MANUAL

Cloud
The overall design goal of the cloud portion of this project was to make it never needed
to be touched. This system has been designed so that the application can continue
development without needing to change any cloud resources.

●​ University Git repository: this project is now hosted on a private gitlab
repository owned by the university this will be passed down to future developers
and has features allowing for easy continuation of development on this project.

●​ CI/CD: a major improvement to last year's design is the implementation of CI/CD
pipelines. These have been designed to automatically run when there is a new
commit in the master branch of the git repository. These will automatically build,
upload and new versions of the application on the cloud meaning all future
developers have to do is merge their changes into the main branch and those
changes will be automatically deployed on the mystemgrowth website

Networking Setup (VPC, Subnets, Security Groups)
The system runs in a custom VPC (sdmay-25-24-vpc) located in the us-east-2 (Ohio)
region. All ECS tasks, RDS, and the ALB operate within private subnets. The ALB
handles incoming public traffic and routes it to internal services.

Private Subnets Used:​
 ​ subnet-0080eb9ac67ee186b, subnet-06db68f7d1f548081,​
 ​ subnet-0f8497e99daf802ea, subnet-00b37daf24bd29e9d
Security Groups:

○​ ECS-SG – ECS tasks, allows HTTP/HTTPS
○​ ALB-SG – ALB, allows public access on ports 80/443/3000
○​ RDS-SG – Allows MySQL (port 3306) from ECS
○​ default – Used temporarily during setup (avoid in production)

Database Setup (Amazon RDS – Aurora MySQL)
Aurora MySQL is used for persistent data storage. It is configured for high availability
and runs entirely within private subnets.

Endpoint: sd-may2524-db.c588auok61gp.us-east-2.rds.amazonaws.com
●​ Port: 3306
●​ User: root
●​ Instance Class: db.t3.micro​

Multi-AZ: Enabled across us-east-2a and us-east-2b
●​ Security Group: RDS-SG

Elastic Container Registry (ECR)
Docker images are stored in Amazon ECR, one repository for each service.
CI/CD pushes both latest and commit-tagged images on each update.

●​ frontend-service – Used by the frontend-service-task-new ECS service
●​ sdmay25-24-backend – Used by the backend-service ECS service

Application Load Balancer (ALB)
The ALB routes public traffic to the frontend service.

●​ Name: sdmay25-24-ALB
●​ DNS: sdmay25-24-ALB-777576476.us-east-2.elb.amazonaws.com​

Listeners:
○​ Port 80 → HTTP → Target group sdmay25-24-NEW-ALB-TG
○​ Port 443 → HTTPS (ACM cert for mystemgrowthprofileserver.com)
○​ Port 3000 → For development only

Note: Backend is not exposed through the ALB. It is only accessible within the private
VPC.

Elastic Container Service (ECS)
AWS ECS (Fargate) runs containers for both frontend and backend services.

●​ Cluster: sdmay25-24-ECS
●​ Launch Type: FARGATE
●​ Subnets: Private subnets only
●​ Security Groups: ECS-SG, ALB-SG, RDS-SG, default
●​ CloudWatch Logging: Enabled for both services
●​ Services:

●​ backend-service – Private-only, no ALB integration
●​ frontend-service-task-new – Routed via ALB to serve public traffic​

CI/CD Pipeline (GitLab + AWS)
GitLab CI/CD automates building and deploying containers.

●​ Stages: build, deploy
●​ Builder: Kaniko (Dockerless)
●​ Image Tags: latest, Git commit SHA
●​ Environment Variables: Set in GitLab CI/CD and in .env files​

Trigger Rules: Pipeline only runs when changes are detected in the relevant
service folder

Frontend
The primary goal of the frontend team was to create clean, modern, reusable
components as building blocks for the UI/UX. Additionally, the student role had a large
focus on responsiveness for mobile devices, since students may take the survey on their
phones.​
​
To view and run the frontend locally, navigate into the iinspire-app folder from the Git
Repo. You will need to run “npm install” to ensure your dependencies are updated.​
​
Then, use the command “npm run dev” to start a local development environment and
click the link using “https://localhost:3000”.​
​
Upon changing code, use “Ctrl + S” to save and the localhost server will update with
your changes.

When your changes are completed, use the branch naming convention of ​
“issue #-briefDesc”. For example: 23-createPCHome.​
​
View Additional Frontend Documentation here:
https://docs.google.com/document/d/1xCZM9W_9N0Qq_JYrChEArAEm881zDPkQYJYd
EE3PMPs/edit?usp=sharing

https://docs.google.com/document/d/1xCZM9W_9N0Qq_JYrChEArAEm881zDPkQYJYdEE3PMPs/edit?usp=sharing
https://docs.google.com/document/d/1xCZM9W_9N0Qq_JYrChEArAEm881zDPkQYJYdEE3PMPs/edit?usp=sharing

Backend
The Primary goal of the backend team was to create modularity between API endpoints
and database tables while continuing to scale up features and stored data.

The modularity was achieved using the Router, Controller, Service architecture,
giving each database table an individual folder with these three files handling different
aspects of responding to client requests. This architecture kept files simple and
lightweight so code can be easily reused.

The dbconfig file creates a DB connection pool, this limits the number of connections
the Node server must make to the sql server for queries, this way service functions can
borrow a connection, make their query and then return it back to the pool.

App.js handles creation and deployment of the nodejs server, The API folder is exported
to the app.js folder so all request starting with /api will automatically be routed and
handled to the correct table’s router without the app.js file needing any changes if new
api endpoints are created.

APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
●​ Versions considered before client’s specifications have changed

o​ AWS EC2 Instance: Initially we considered using the AWS Elastic
Compute Cloud (EC2) to manually provision production deployments.
After more consideration we decided to use the AWS Elastic Container
Service (ECS) since it would automatically update our production
environment after it passed the CI/CD.

o​ NextAuth: We considered using NextAuth for user authentication to get
into the web application. However, after talking to the client, they wanted
other functionality working better so we decided to go with a normal
username and password combination to log into the application.

o​ GitHub: At the beginning we were going to choose to use GitHub for our
code repository. This changed when we had more conversations about
GitLab’s CI/CD pipeline capabilities and after talking with the client we
chose to change to GitLab over GitHub.

●​ Versions considered before learning more about the project

o​ GitHub Actions for CI/CD: Before understanding ECS and AWS-specific
deployment needs, we started with GitHub Actions. But managing
secrets, ECS task updates, and ECR was more complex there, so we
migrated to GitLab CI/CD where we had better control and flexibility.

o​ Public Subnet Deployment: We first assumed it would be okay to run
everything in public subnets for easier access and testing. After looking
into how we can improve security, we re-architected the setup to use
private subnets for ECS and RDS, with only the ALB exposed.

o​ Researcher Role: Initially, our plan was to have 4 roles: Admin, Program
Coordinator, Researcher, and Student. After discussing the roles and
responsibilities of each user type with our client, we decided that the
researcher role was not necessary for this iteration of the web-app. We
included some of the key roles from the researcher into the admin role to
reduce complexity and meet the more pressing needs of our client.

●​ Versions that resulted in failure to achieve specifications, etc.

o​ Aurora MySQL (again): The increased costs did not make sense for the
project's budget and didn't offer clear benefits over regular MySQL for our
workload.

o​ Single ECS Task for Full Stack: This design didn’t allow independent
scaling or updates of backend and frontend, which became a problem
once development diverged between the two.

o​ CI/CD Running on Every Commit: Early pipelines built and deployed
the entire stack every time, even if the change was small. This led to slow
builds and unnecessary resource usage. Now, CI/CD only runs for
changes in relevant directories.

APPENDIX 4 – CODE
●​ https://git.ece.iastate.edu/sd/sdmay25-24

o​ Note: for security reasons this is is not publicly accessible without being a
project member assigned to this repo by ETG

APPENDIX 5 – TEAM CONTRACT

Team Members
1) Landon Gulotta - Cloud
2) Alex Moeller - Project Manager/Frontend
3) Max Strater - Frontend
4) Nick Pinnello - Backend
5) Isabelle Raghavan - Frontend
6) Matthew Bennett - Cloud
7) Charlie Moreland - Backend

https://git.ece.iastate.edu/sd/sdmay25-24

Team Procedures

Team Meetings: Monday, 10:00am, Virtual (Teams)
Client/Advisor Meetings: Monday, 2:30pm, In-Person (Durham)

Our preferred method of communication is primarily Discord between team members
and our client/advisor. Additionally, we use text messaging for quicker responses.

When making any decisions, the team first talks to their group members
(frontend/backend/cloud). Once a decision is made between them they then send the
decision to the rest of the team for a majority vote.

We use Microsoft Teams to track all of our meeting minutes. For each meeting, we have
someone responsible for logging and reporting the meeting minutes each week.

Participation Expectations
1.​ Expected individual attendance, punctuality, and participation at all team

meetings:
2.​ Expected level of responsibility for fulfilling team assignments, timelines, and

deadlines:
3.​ Expected level of communication with other team members:
4.​ Expected level of commitment to team decisions and tasks:Leadership

Strategy for Guiding Work

Utilizing GitLab issues as well as making an updated task list every week after our
advisor meeting.

Strategy for Recognition

To ensure that we are recognising the contributions of all of the team members we start
each meeting by going one by one stating what they have accomplished for the week.
We also state what the next task will be and if they need any assistance with anything
related to the project.

Collaboration and Inclusion
1. Describe the skills, expertise, and unique perspectives each team member brings to
the team

●​ Alex Moeller (Project Manager/Frontend Developer): Skilled in leadership and
organization, Alex ensures team coordination and clear communication with the
client.

●​ Nick Pinnello (Backend Developer): Strong in backend development, Nick
specializes in secure database management and API design.

●​ Charlie Moreland (Backend Developer): Charlie focuses on backend
optimization and reliable database systems.

●​ Max Strater (Frontend Developer): Max combines technical skill and creativity
to design functional and visually appealing user interfaces.

●​ Isabelle Raghavan (Frontend Developer): Isabelle excels at creating intuitive,
user-friendly designs with attention to detail.

●​ Matthew Bennett (Cloud Engineer): Matthew is experienced in designing
scalable and efficient cloud infrastructure.

●​ Landon Gulotta (Security Engineer): Landon brings expertise in cybersecurity,
ensuring the application is secure and resilient. Some AWS experience to help
get a working, automatic updating production environment. 2. Strategies for
encouraging and support contributions and ideas from all team members:

●​ Regularly scheduled weekly meetings (both team and advisor-led) to discuss
progress, challenges, and new ideas.

●​ Open communication channels, such as Discord, to encourage informal
brainstorming and collaboration.

●​ Recognition of individual contributions during meetings and in project
communications to motivate and foster engagement.

3. Procedures for identifying and resolving collaboration or inclusion issues

●​ Team members can report concerns during meetings or directly to the project
manager for confidential discussions.

●​ A constructive feedback system ensures all team members feel heard and
valued.

●​ Persistent issues are escalated to the advisor for impartial mediation and
resolution.

Goal-Setting, Planning, and Execution

Spring Semester Goals

Our primary goals for this semester are to develop the application to meet our advisor’s
expectations in both functionality and design. We want to make sure it aligns with their
vision and feedback. Additionally, we aim to implement a fully automated production
environment, including CI/CD pipelines so that future updates can be pushed with
minimal user intervention.

Consequences for Not Adhering to Team Contract
​
Handling Infractions

If there were to be an infraction, we will bring it up with the team as well as our advisor in
our weekly meetings. We will also reach out to the individual for a separate meeting to
discuss why their work effort is not meeting standards. If they continue the rest of the
team will have a private meeting with the advisor to talk about next steps with the
individual.

Continuing Infractions

If the fractions continue after we take steps to mitigate them, we will set up a meeting
with the professors as well as our advisor for additional help. We will also discuss
grading for the team without the individual’s help and what their grade should be based
on their contributions.

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

1) Landon Gulotta - DATE:4/28/2025
2) Max Strater - DATE: 4/28/2025
3) Nick Pinnello - DATE: 4/28/2025
4) Isabelle Raghavan - DATE: 4/28/2025
5) Alex Moeller - DATE: 4/28/2025
6) Charlie Moreland - DATE: 4/28/2025
7) Matthew Bennett - DATE: 4/28/2025

	Executive Summary
	
	Learning Summary
	Table of Contents
	
	1.​Introduction
	1.1.​PROBLEM STATEMENT
	1.2.​INTENDED USERS

	2. Requirements, Constraints, And Standards
	2.1 REQUIREMENTS, CONSTRAINTS, AND STANDARDS
	2.2 ENGINEERING STANDARDS
	IEEE 26515-2018 – Agile Development Cycle
	IEEE 1448a-1996 – Standard for Software Life Cycle Processes
	IEEE 1621-2006 – Standard for User Interface Design and Management

	
	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	
	3.2 TASK DECOMPOSITION
	Cloud
	
	Frontend
	Backend

	3.4 PROJECT TIMELINE/SCHEDULE
	
	Task Breakdown

	
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	
	3.6 PERSONEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 BROADER CONTEXT
	
	4.1.2 Prior Work/Solutions
	
	4.1.3 Technical Complexity

	
	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	Backend Role Management Design
	Separation of Frontend and Backend Services
	Dashboard Design

	
	4.2.2 Ideation
	
	4.2.3 Decision-Making and Trade-Off

	4.3​FINAL DESIGN
	4.3.1 Overview
	Backend Overview
	Frontend Overview
	Cloud Overview

	
	4.3.2 Detailed Design and Visual(s)
	
	4.3.3 Functionality
	
	4.3.4 Areas of Challenge

	
	
	
	
	
	4.4 TECHNOLOGY CONSIDERATIONS

	
	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3​INTEGRATION TESTING
	5.4 SYSTEM TESTING
	5.5 REGRESSION TESTING
	5.6 ACCEPTANCE TESTING
	5.7 USER TESTING
	
	
	5.9 RESULTS

	
	6 Implementation
	6.1 DESIGN ANALYSIS

	7 Ethics and Professional Responsibility
	7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	
	7.2 FOUR PRINCIPLES
	7.3 VIRTUE
	

	
	8 Conclusions
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	
	8.3 NEXT STEPS

	
	9 References
	
	10 Appendices
	APPENDIX 1 – OPERATION MANUAL
	Cloud
	
	Networking Setup (VPC, Subnets, Security Groups)
	
	Database Setup (Amazon RDS – Aurora MySQL)
	Elastic Container Registry (ECR)
	Application Load Balancer (ALB)
	Elastic Container Service (ECS)
	
	CI/CD Pipeline (GitLab + AWS)

	Frontend
	Backend

	
	APPENDIX 2 – ALTERNATIVE/INITIAL VERSION OF DESIGN
	APPENDIX 4 – CODE
	APPENDIX 5 – TEAM CONTRACT
	Team Members
	Team Procedures
	Participation Expectations
	
	Collaboration and Inclusion
	
	Goal-Setting, Planning, and Execution
	Consequences for Not Adhering to Team Contract

